High molecular mass assemblies of amyloid-β oligomers bind prion protein in patients with Alzheimer's disease.
نویسندگان
چکیده
Alzheimer's disease is the most common form of dementia and the generation of oligomeric species of amyloid-β is causal to the initiation and progression of it. Amyloid-β oligomers bind to the N-terminus of plasma membrane-bound cellular prion protein (PrP(C)) initiating a series of events leading to synaptic degeneration. Composition of bound amyloid-β oligomers, binding regions within PrP(C), binding affinities and modifiers of this interaction have been almost exclusively studied in cell culture or murine models of Alzheimer's disease and our knowledge on PrP(C)-amyloid-β interaction in patients with Alzheimer's disease is limited regarding occurrence, binding regions in PrP(C), and size of bound amyloid-β oligomers. Here we employed a PrP(C)-amyloid-β binding assay and size exclusion chromatography on neuropathologically characterized Alzheimer's disease and non-demented control brains (n = 15, seven female, eight male, average age: 79.2 years for Alzheimer's disease and n = 10, three female, seven male, average age: 66.4 years for controls) to investigate amyloid-β-PrP(C) interaction. PrP(C)-amyloid-β binding always occurred in Alzheimer's disease brains and was never detected in non-demented controls. Neither expression level of PrP(C) nor known genetic modifiers of Alzheimer's disease, such as the PrP(C) codon 129 polymorphism, influenced this interaction. In Alzheimer's disease brains, binding of amyloid-β to PrP(C) occurred via the PrP(C) N-terminus. For synthetic amyloid-β42, small oligomeric species showed prominent binding to PrP(C), whereas in Alzheimer's disease brains larger protein assemblies containing amyloid-β42 bound efficiently to PrP(C). These data confirm Alzheimer's disease specificity of binding of amyloid-β to PrP(C) via its N-terminus in a large cohort of Alzheimer's disease/control brains. Differences in sizes of separated protein fractions between synthetic and brain-derived amyloid-β binding to PrP(C) suggest that larger assemblies of amyloid-β or additional non-amyloid-β components may play a role in binding of amyloid-β42 to PrP(C) in Alzheimer's disease.
منابع مشابه
High molecular mass assemblies of amyloid-b oligomers bind prion protein in patients with Alzheimer’s disease
Alzheimer’s disease is the most common form of dementia and the generation of oligomeric species of amyloid-b is causal to the initiation and progression of it. Amyloid-b oligomers bind to the N-terminus of plasma membrane-bound cellular prion protein (PrP) initiating a series of events leading to synaptic degeneration. Composition of bound amyloid-b oligomers, binding regions within PrP, bindi...
متن کاملBreaking the Code of Amyloid-β Oligomers
Departing from the original postulates that defined various neurodegenerative disorders, accumulating evidence supports a major role for soluble forms of amyloid proteins as initiator toxins in Alzheimer's disease, Parkinson's disease, frontotemporal dementias, and prion diseases. Soluble multimeric assemblies of amyloid- β , tau, α -synuclein, and the prion protein are generally englobed under...
متن کاملAmyloid-β nanotubes are associated with prion protein-dependent synaptotoxicity
Growing evidence suggests water-soluble, non-fibrillar forms of amyloid-β protein (Aβ) have important roles in Alzheimer's disease with toxicities mimicked by synthetic Aβ(1-42). However, no defined toxic structures acting via specific receptors have been identified and roles of proposed receptors, such as prion protein (PrP), remain controversial. Here we quantify binding to PrP of Aβ(1-42) af...
متن کاملModeling Amyloid-Beta as Homogeneous Dodecamers and in Complex with Cellular Prion Protein
Soluble amyloid beta (Aβ) peptide has been linked to the pathology of Alzheimer's disease. A variety of soluble oligomers have been observed to be toxic, ranging from dimers to protofibrils. No tertiary structure has been identified as a single biologically relevant form, though many models are comprised of highly ordered β-sheets. Evidence exists for much less ordered toxic oligomers. The mech...
متن کاملβ-Hairpin-Mediated Formation of Structurally Distinct Multimers of Neurotoxic Prion Peptides
Protein misfolding disorders are associated with conformational changes in specific proteins, leading to the formation of potentially neurotoxic amyloid fibrils. During pathogenesis of prion disease, the prion protein misfolds into β-sheet rich, protease-resistant isoforms. A key, hydrophobic domain within the prion protein, comprising residues 109-122, recapitulates many properties of the full...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 137 Pt 3 شماره
صفحات -
تاریخ انتشار 2014